What is Latch?
Latch is one kind of very quick (could be acquired and released in nanoseconds) lock or serialization mechanism (makes more sense) to protect Oracle’s shared memory in SGA. Basically latch protects the same area of SGA being updated by more than one process.

Now question comes, what are protected and why?

Each Oracle operation needs to read and update SGA. For example –

1. When a query reads a block from disk, it will modify a free block in buffer cache and adjust the buffer cache LRU chain
2. When a new SQL statement is parsed, it will be added to the library cache within SGA
3. When DML issued and modifications are made in blocks, changes are placed in redo buffer
4. Database writer periodically (after commit, after SCN change or after each 3 sec) writes buffers from memory to disk and updates their status from dirty to clean.
5. Redo log writer writes blocks from redo buffer to redo logs.

Latch prevents any of these operations from colliding and possibly corrupting the SGA.

If the specific latch is already in use by another process, oracle will retry very frequently with a cumulative delay up to certain times (controlled by hidden parameter) called spin count. First time one process fails to acquire the latch, it will attempt to awaken after 10 milliseconds up to its spin count. Subsequent waits will increase in duration – might be seconds in extreme cases. This affects response time and throughput.

Most common type latch is Cache Buffer Latch and Cache buffer LRU chain latch which are caused for highly accessing blocks, called hot blocks. Contention on these latches is typically caused by concurrent access to a very hot block. The most common type of such hot block is index root or block branch.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s